∫cos2x−cos2αcosx−cosαdx
=∫2cos2x−1−2cos2α+1cosx−cosαdx
=∫2cos2x−2cos2αcosx−cosαdx
=∫2(cos2x−cos2α)cosx−cosαdx
=∫2(cosx+cosα)(cosx−cosα)(cosx−cosα)dx
=∫2(cosx+cosα)dx
=2∫cosxdx+2cosα∫1dx
=2sinx+2xcosα+C
Hence, this is the answer.
Find the integrals of the functions. ∫cos2x−cos2αcosx−cosαdx.