I=∫cos(x−a)sin(x+b)dx
Put
x + b = t
⇒dx=dt
=∫cos(t−b−a)sintdt
=∫cos{t−(a+b)}sintdt
=∫costcos(a+b)+sintsin(a+b)sintdt
=∫[cottcos(a+b)+sin(a+b)]dt
=cos(a+b)∫cottdt+sin(a+b)dt
=cos(a+b)In∫sint1+tsin(a+b)sin(a+b)+c
=cos(a+b)In∫sin(x+b)1+(x+b)sin(a=b)+c
=cos(a+b)In|sin(x+b)|+xsin(a+b)+c
c=c+bsin(a+b)