wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve cot2xcos2αcotxcosαdx

Open in App
Solution

Integrate cos2xcos2αcosxcosαdx
cos2xcos2αcosxcosαdx
(2cos2x1)(2cos2α1)cosxcosαdx
(cos2a=2cos2a1)
2cos2x12cos2α+1cosxcosαdx
2(cos2xcos2α)cosxcosαdx
2(cos2xcos2α)cosxcosα)dx
2(cosxcosα)(cosx+cosα)(cosxcosα)dx
2(cosx+cosα)dx
2[cosx dx+cosαdx]
2sinx+C1+2xcosα+C2
2sinx+2xcosα+C (C=C1+C2)
2(sinx+xcosα)+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon