The correct option is
B tan−1(tanx2+1)+cI=∫dx2sinx+cosx+3
=∫dx2⎛⎜
⎜⎝2tanx21+tan2x2⎞⎟
⎟⎠+⎛⎜
⎜⎝1−tan2x21+tan2x2⎞⎟
⎟⎠+3
=∫1+tan2x2dx4tanx2+1−tan2x2+3+3tan2x2
=∫sec2x2dx2tan2x2+4tanx2+4
Let tanx2=t
=sec2x2.12dx=dt
=sec2x2dx=2dt
=∫2dt2t2+4t+4=∫dtt2+2t+2
=∫dt(t+1)2+(1)2=tan−1(t+1)+c
=tan−1(tanx2+1)+c