I=∫dx3+2sinx+cosx
Substitute sinx=2tanx21+tan2x2 and cosx=1−tan2x21+tan2x2
∴I=∫dx3+2×2tanx21+tan2x2+1−tan2x21+tan2x2
=∫1+tan2x23+3tan2x2+4tanx2+1−tan2x2dx
=∫sec2x2dx2tan2x2+4tanx2+4
=∫sec2x2dx2[(tanx2+1)2+1]
Let t=tanx2⇒dt=12sec2x2
I=∫dt(t+1)2+1
=tan−1(t+1)+c
=tan−1(tanx2+1)+c where c is the constant of integration.