wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve: dxsecx+cosecx

A
12(cosxsinx)122ln∣ ∣ ∣tanx2+2tanx2+2∣ ∣ ∣+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
[sinxcosx12logcosec(x+π4)cot(x+π4)]+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
12[sinxcosx12logcosec(x+π4)cot(x+π4)]+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
12[sinxcosxlogcosec(x+π4)cot(x+π4)]+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A
12(cosxsinx)122ln∣ ∣ ∣tanx2+2tanx2+2∣ ∣ ∣+c

Consider, I=1secx+cosecxdx

11cosx+1sinxdx=sinxcosxsinx+cosxdx

I=122sinxcosxsinx+cosxdx=121+2sinxcosx1sinx+cosxdx

I=12(sinx+cosx)2sinx+cosxdx121sinx+cosxdx

I=12(sinx+cosx)dx1212sinx2cosx2+cos2x2sin2x2dx

I=12(cosxsinx)1212sinx2cosx2+cos2x2sin2x2dx

Let this be I1

I1=1212sinx2cosx2+cos2x2sin2x2dx

Divide Numberator and denominator by cos2x2

I1=12sec2x22tanx2+1tan2x2dx

Put tanx2=t 12sec2x2dx=dt

I1=12t+1t2dt=1t22t1dt

I1=1(t1)222dt=122lnt12t1+2+c

I1=122ln∣ ∣ ∣tanx212tanx21+2∣ ∣ ∣

I=12(cosxsinx)122ln∣ ∣ ∣tanx2+2tanx2+2∣ ∣ ∣+c


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon