I=∫ex(1+x))cos2(ex⋅x)dx (1)
Let ex⋅x=t.
Differentiate above equation with respect to x.
ddx(exx)=dtdx
ex+xex=dtdx
ex(x+1)dx=dt
Substitute exx=t and ex(x+1)dx=dt in equation (1).
I=∫dtcos2t
=sec2tdt
=tant+C (2)
Here, C is integration constant.
Substitute t=exx in equation (2).
I=tan(exx)+C
Thus, the integration of I=∫ex(1+x)cos2(ex⋅x)dx is I=tan(exx)+C, where C is integration constant.