Solve ∫ex(1+x)cos2(exx)dx equals
Consider the given integral.
I=∫ex(1+x)cos2(exx)dx
Let t=exx
dtdx=exx+ex
dt=ex(x+1)dx
Therefore,
I=∫dtcos2t
I=∫sec2tdt
I=tant+C
On putting the value of t, we get
I=tan(exx)+C
Hence, this is the answer.