wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve:
π3π6sinx+cosxsin2xdx

Open in App
Solution

Iπ/3π/6sinx+cosx2sinx+cosxdx=π/3π/612sinxcosxdx+π/3π/612cosxsinxdx
Put tanx=t2
sin2dx=2tdt
dx=2t1+t2dt
31312t2t(1+t2)dt+12×2tt(1+t2)dt
31212[2t2+2(t2+1)]dt
2×313dt
2+]313
I2[31/431/4]

1112235_1189930_ans_212befe377a04916b63daa4a4b1f9cfd.jpeg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon