1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration of Trigonometric Functions
Solve: ∫sin...
Question
Solve:
∫
sin
−
1
x
√
1
−
x
2
Open in App
Solution
L
e
t
,
I
=
∫
sin
−
1
x
√
1
−
x
2
d
x
Put
sin
−
1
x
=
t
⟹
1
√
1
−
x
2
d
x
=
d
t
∴
I
=
∫
t
d
t
I
=
t
2
2
+
c
=
(
sin
−
1
x
)
2
2
+
c
(Ans)
Suggest Corrections
0
Similar questions
Q.
Solve:
sin
−
1
x
+
sin
−
1
√
1
−
x
2
Q.
Solve for
x
:
sin
−
1
x
√
1
+
x
2
+
sin
−
1
1
√
1
+
x
2
=
sin
−
1
(
1
+
x
√
1
+
x
2
)
Q.
Solve
2
c
o
s
−
1
x
=
s
i
n
−
1
(
2
x
√
1
−
x
2
)
.
Q.
Solve
sin
−
1
(
x
√
x
2
+
a
2
)
Q.
Solve
is equal to
(A)
(
B)
(
C)
(
D)