We have,
I=∫sin4xcos2xdx
I=∫(1−cos2x)2cos2xdx
I=∫(1+cos4x−2cos2x)cos2xdx
I=∫(1cos2x+cos2x−2)dx
I=∫(sec2x+cos2x−2)dx
We know that
cos2x=1+cos2x2
Therefore,
I=∫(sec2x+1+cos2x2−2)dx
I=tanx+12(x+sin2x2)−2x+C
Hence, this is the answer.