wiz-icon
MyQuestionIcon
MyQuestionIcon
5
You visited us 5 times! Enjoying our articles? Unlock Full Access!
Question

Solve:
sin4x+cos4xsin3x+cos3x

Open in App
Solution

I=sin4x+cos4xsin3x+cos3xdx
=[(cosx+sinx)(cos2x+sin2x)sinxcosx(sinx+cosx)(sin2xsinxcosx+cos2x)]dx
=(cosx+sinx)dx(cos2x+sin2x)sinxcosx(sinx+cosx)(sin2xsinxcosx+cos2x)dx
Ist part
IInd part
Integrating II part
I2=sinxcosx(sinx+cosx)(1sinxcosx)
Now let u=sinxcosx
du=(cosx+sinx)dx
u2=12sinxcosx
sinxcosx=(1u2)/2
I2=(1u2)/2(sinx+cosx)2(11u22)du
I=1u2(2u2)(1+u2)du
=162log2+u2u23tan1u+c1
=162log2+sinxcosx2sinx+cosx23tan1(sinxcosx)+c1
And I1=cosxdx+sinxdx=sinxcosx+c2
I=I1+I2=sinxcosx+162log2+sinxcosx2sinx+cosx23tan1(sinxcosx)+c
where c=c1+c2.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon