I=∫sin4x+cos4xsin3x+cos3xdx
=∫[(cosx+sinx)−(cos2x+sin2x)sinxcosx(sinx+cosx)(sin2x−sinxcosx+cos2x)]dx
=∫(cosx+sinx)dx−∫(cos2x+sin2x)sinxcosx(sinx+cosx)(sin2x−sinxcosx+cos2x)dx
Ist part
IInd part
Integrating II part
I2=∫−sinxcosx(sinx+cosx)(1−sinxcosx)
Now let u=sinx−cosx
du=(cosx+sinx)dx
u2=1−2sinxcosx
⇒sinxcosx=(1−u2)/2
∴I2=∫−(1−u2)/2(sinx+cosx)2(1−1−u22)du
I=∫1−u2(2−u2)(1+u2)du
=16√2log∣∣∣√2+u√2−u∣∣∣−23tan−1u+c1
=16√2log∣∣∣√2+sinx−cosx√2−sinx+cosx∣∣∣−23tan−1(sinx−cosx)+c1
And I1=∫cosxdx+∫sinxdx=sinx−cosx+c2
∴I=I1+I2=sinx−cosx+16√2log∣∣∣√2+sinx−cosx√2−sinx+cosx∣∣∣−23tan−1(sinx−cosx)+c
where c=c1+c2.