wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve: sin6x+cos6xsin2x.cos2xdx.

Open in App
Solution

sin6x+cos6xsin2xcos2xdx.=(sin2x)3+(cos2x)3sin2x.cos2xdx

=(sin2x+cos2x)(sin4x+cos4xsin2x.cos2x)sin2x.cos2xdx

using
a3+b3=(a+b)(a2+b2ab)

=1.1sin4x+cos4xsin2x.cos2xsin2x.cos2xdx[sin2x+cos2x=1]

=[sin4xsin2x.cos2x+cos4xsin2xcos2xsin2xcos2xsin2x.cos2x]dx

=(tan2x+cot2x1)dx

=(sec2x1+cosec2x11)dx

=[(sec2x+cosec2x)3]dx

=tanxcotx3x+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Principal Solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon