wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve:sinx.cosxacos2x+bsin2x.dx

Open in App
Solution

Given the integral,
cosxsinxacos2x+bsin2xdx
Let us assume,
u=bsin2x+acos2xdudx=2bcosxsinx2acosxsinxdudx=cosxsinx(2b2a)cosxsinxdx=12b2adu
Substituting these values in the given integral we get,
cosxsinxacos2x+bsin2xdx=1(2b2a)udu=12b2a1udu=12b2aln(u)=ln(u)2b2a=ln(acos2x+bsin2x)2b2acosxsinxacos2x+bsin2xdx=ln(acos2x+bsin2x)2b2a+C.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon