I=∫sinxsin3x+cos3xdx=∫sinx(sinx+cosx)(sin2x−sinxcosx+cos2x)dx[∵a3+b3=(a+b)(a2−ab+b2)]=∫sinx(sinx+cosx)(1−sinxcosx)dx=∫2sinx(sinx+cosx)(2−2sinxcosx)dx=∫2sinx+cosx−cosx(sinx+cosx)(2−2sinxcosx)dx=∫sinx+cosx(sinx+cosx)(2−2sinxcosx)dx+∫sinx−cosx(sinx+cosx)(2−2sinxcosx)dx=∫1(2−2sinxcosx)dx+∫sinx−cosx(sinx+cosx)(2−2sinxcosx)dxLet,
I1=∫1(2−2sinxcosx)dx,I2=∫sinx−cosx(sinx+cosx)(2−2sinxcosx)dx
First solving I1 we get,
I1=∫1(2−2sinxcosx)dx=∫12−2tanxcos2xdx=∫12−2tanxsec2xdx=∫sec2x2sec2x−2tanxdx=∫sec2x2tan2x+2−2tanxdx
Let,
y=tanx⇒dydx=sec2x⇒dy=sec2xdx
∴I1=∫12y2+2−2ydy=∫12y2−2y+12−12+2dy=∫1(√2y−1√2)2−32dy
Let us assume,
√2y−1√2=√3√2tanz⇒√2dy=√3√2sec2zdz
Substituting these values in I1,
I1=∫√3sec2z2(32tan2z−32)dz=∫√3sec2z3sec2zdz=∫1√3dz=z√3
Substituting z in terms of y we get,
I1=arctan(2y−1√3)√3
Substituting y in terms of x we get,
I1=arctan(2tanx−1√3)√3
Again, solving I2 we get,
I2=∫sinx−cosx(sinx+cosx)(2−2sinxcosx)dx=∫(sinx−cosx)(sinx+cosx)(sinx+cosx)2(2−2sinxcosx)dx=∫sin2x−cos2x(sin2x+cos2x+2sinxcosx)(2−2sinxcosx)dx=∫−cos2x(1+sin2x)(2−sin2x)dx=∫−(1+2)cos2x3(1+sin2x)(2−sin2x)dx=∫−(1+sin2x+2−sin2x)cos2x3(1+sin2x)(2−sin2x)dx=−∫(1+sin2x)cos2x3(1+sin2x)(2−sin2x)dx−∫(2−sin2x)cos2x3(1+sin2x)(2−sin2x)dx=−∫cos2x3(2−sin2x)dx−∫cos2x3(1+sin2x)dx=∫13(2−sin2x)d(2−sin2x)−∫13(1+sin2x)d(1+sin2x)=13ln(2−sin2x)−13ln(1+sin2x)∴I=arctan(2tanx−1√3)√3+13ln(2−sin2x)−13ln(1+sin2x)∴∫sinxsin3x+cos3xdx=arctan(2tanx−1√3)√3+13ln(2−sin2x)−13ln(1+sin2x).