wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve:sinxsin3x+cos3xdx

Open in App
Solution

I=sinxsin3x+cos3xdx=sinx(sinx+cosx)(sin2xsinxcosx+cos2x)dx[a3+b3=(a+b)(a2ab+b2)]=sinx(sinx+cosx)(1sinxcosx)dx=2sinx(sinx+cosx)(22sinxcosx)dx=2sinx+cosxcosx(sinx+cosx)(22sinxcosx)dx=sinx+cosx(sinx+cosx)(22sinxcosx)dx+sinxcosx(sinx+cosx)(22sinxcosx)dx=1(22sinxcosx)dx+sinxcosx(sinx+cosx)(22sinxcosx)dx
Let,
I1=1(22sinxcosx)dx,I2=sinxcosx(sinx+cosx)(22sinxcosx)dx
First solving I1 we get,
I1=1(22sinxcosx)dx=122tanxcos2xdx=122tanxsec2xdx=sec2x2sec2x2tanxdx=sec2x2tan2x+22tanxdx
Let,
y=tanxdydx=sec2xdy=sec2xdx
I1=12y2+22ydy=12y22y+1212+2dy=1(2y12)232dy
Let us assume,
2y12=32tanz2dy=32sec2zdz
Substituting these values in I1,
I1=3sec2z2(32tan2z32)dz=3sec2z3sec2zdz=13dz=z3
Substituting z in terms of y we get,
I1=arctan(2y13)3
Substituting y in terms of x we get,
I1=arctan(2tanx13)3
Again, solving I2 we get,
I2=sinxcosx(sinx+cosx)(22sinxcosx)dx=(sinxcosx)(sinx+cosx)(sinx+cosx)2(22sinxcosx)dx=sin2xcos2x(sin2x+cos2x+2sinxcosx)(22sinxcosx)dx=cos2x(1+sin2x)(2sin2x)dx=(1+2)cos2x3(1+sin2x)(2sin2x)dx=(1+sin2x+2sin2x)cos2x3(1+sin2x)(2sin2x)dx=(1+sin2x)cos2x3(1+sin2x)(2sin2x)dx(2sin2x)cos2x3(1+sin2x)(2sin2x)dx=cos2x3(2sin2x)dxcos2x3(1+sin2x)dx=13(2sin2x)d(2sin2x)13(1+sin2x)d(1+sin2x)=13ln(2sin2x)13ln(1+sin2x)I=arctan(2tanx13)3+13ln(2sin2x)13ln(1+sin2x)sinxsin3x+cos3xdx=arctan(2tanx13)3+13ln(2sin2x)13ln(1+sin2x).


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon