We have,
I=∫√1+x2x4dx
Let put
x=tanθ.......(1)
Differentiation this and we get,
dx=sec2θdθ
Then,
I=∫√1+tan2θtan4θsec2θdθ
=∫√sec2θtan4θsec2θdθ
=∫sec3θtan4θdθ
=∫sec3θtan3θtanθdθ∵secθtanθ=cscθ
=∫csc3θcotθdθ
=∫csc2θ(cscθcotθ)dθ
Again let,
cscθ=t ......(2)
Again differentiating and we get
−cscθcotθdθ=dt
cscθcotθdθ=−dt
Then,
=∫t2(−dt)
=−∫t2dt
On integrating and we get,
=−t33+C∵(∫xndx=xn+1n+1)
Put t=cscθ by equation (2) to, and we get,
=−(cscθ)33+C
By equation (1) to,
x=tanθ
tanθ=x
θ=tan−1x
Then,
=−[csc(tan−1x)]33+C
=−[csc(csc−1√x2+1x)]33+C∵tan−1x=√x2+1x
=−(√x2+1x)33+C
=−(√x2+1)33x3+C
Hence, this is the answer.