∫x21+2xdx=12∫2x2+x2x+1dx−12∫x1+2xdx
(Adding & subtracting x(1+2x)after multiplying & dividing by 2)
=12∫x(2x+1)(2x+1)dx−[12.12∫2x+12x+1dx−12.12∫11+2xdx]
(Adding & subtracting 1(1+2x) after multiplying & dividing 2nd term by 2)
=12∫xdx−[14∫1dx−14∫dx1+2x]
=x22.2−x4+14.12∫2dx1+2x+C′
=x24−x4+18log|1+2x|+C ( Here f(x)=1+2x & we know ∫f1(x)f(x)dx=log|f(x)|+C)