∫√x−5x−7dx
Put x−5x−7=u
⟹dx=11x−7−x−5(x−7)2du
x=2u−1+7
Therefore I=−2∫√u(u−1)2du
⟹ Put v=√u^2}
du=2√udv
=2∫v2(v2–1)2dv
=2∫(1v2−1+1(v2−1)2)dv
=2∫dvv2−1+2∫(14(v+1)+14(v+1)2−14(v−1)+14(v−1)2)dv
=2×12log|v−1v+1|+12log|v+1|−121(v+1)−12log|v−1|−14(v−1)+c
=log|√x−5x−7−1√x−5x−7+1|−12log|√x−5x−7+1|−12(√x−5x−7+1)−12log|√x−5x−7−1|−1(4√x−5x−7+1)+c