x2+1x2−5x+6=x2+1−5x+6+5x−6x2−5x+6
=(x2−5x+6)+(5x−5)x2−5x+6
=1+5x−5x2−5x+6
=1+5x−5x(x−2)−3(x−2)
=1+5x−5(x−2)(x−3)
Now solving 5x−5(x−2)(x−3) using partial function
Let 5(x−1)(x−2)(x−3)=A(x−2)+B(x−3)
5(x−1)(x−2)(x−3)=A(x−3)+B(x−2)(x−2)+B(x−3)
5(x−1)=A(x−3)+B(x−2)
Putting x=2
5(2−1)=A(2−3)+B(2−2)
5=−A+0
A=−5
Similarly putting x=3
5(3−1)=A(3−3)+B(3−2)
B=10
Hence we can write it as
5(x−1)(x−2)(x−3)=−5(x−2)+10(x−3)
Now,
∫x2+1x2−5x+6dx=∫(1+−5(x−2)+10(x−3))dx
=∫dx−∫−5(x−2)dx+∫10(x−3)dx
=x−5log|x−2|+10log|x−3|+c