Let I=∫x2(a+bx)2dx
Put a+bx=u, then bdx=du and x=u−ab.
I=∫(u−ab)2(u)2dub
=∫u2+a2−2aub3u2du
=1b3∫u2+a2−2auu2du
=1b3[∫du+a2∫1u2du−2a∫1udu]
=1b3[u−a2u−2alogu]+c
=1b3[(a+bx)−a2(a+bx)−2alog|a+bx|]+c
=(a+bx)b3−a2b3(a+bx)−2ab3log|a+bx|+c