Consider the given integral.
I=∫x2√1−x2dx
I=∫x2−1+1√1−x2dx
I=∫x2−1√1−x2dx+∫1√1−x2dx
I=∫1√1−x2dx−∫1−x2√1−x2dx
I=∫1√1−x2dx−∫√1−x2dx
We know that
∫dx√a2−x2=sin−1(xa)+C
∫√a2−x2dx=12x√a2−x2+12a2sin−1(xa)+C
Therefore,
I=sin−1x−[12x√1−x2+12sin−1(x)]+C
I=12sin−1x−12x√1−x2+C
Hence, this is the answer.