Let tan−1x4=t
Differentiating both side of above equation with respect to x.
d(tan−1x4)dx=dtdx
4x31+x8=dtdx [tan−1x=11+x2]
x31+x8dx=14dt
Substitute tan−1x4=t and x31+x8dx=14dt in equation (1).
I=14∫sin(t)dt
=14(−cost)+C (2)
Substitute t=tan−1x4 in equation(2)
I=−cos(tan−1x4)4+C
Thus, ∫((x3sin(tan−1x4)1+x4)dx is equal to −cos(tan−1x4)4+C where C is integration constant.