wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve : x4dx(1+x2)3 ?

Open in App
Solution

Given the integral,
x4dx(x2+1)3
using partial fraction we get,
=(1x2+12(x2+1)2+1(x2+1)3)=1x2+1dx21(x2+1)2dx+1(x2+1)3dx
Here,
1x2+1dx=tan1(x)
For,
1(x2+1)2dx
applying reduction formula we get,
=x2(x2+1)+121x2+1dx=tan1(x)2+x2(x2+1)
Again for,
1(x2+1)3dx
applying reduction formula we get,
=x4(x2+1)2+341(x2+1)2dx=3tan1(x)8+3x8(x2+1)+x4(x2+1)21x2+1dx21(x2+1)2dx+1(x2+1)3dx=3tan1(x)85x8(x2+1)+x4(x2+1)2
Hence,
x4dx(x2+1)3=3tan1(x)85x8(x2+1)+x4(x2+1)2+C=3tan1(x)8+5x33x8(x2+1)2+C.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 7
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon