Given the integral,∫x4dx(x2+1)3
using partial fraction we get,
=∫(1x2+1−2(x2+1)2+1(x2+1)3)=∫1x2+1dx−2∫1(x2+1)2dx+∫1(x2+1)3dx
Here,
∫1x2+1dx=tan−1(x)
For,
∫1(x2+1)2dx
applying reduction formula we get,
=x2(x2+1)+12∫1x2+1dx=tan−1(x)2+x2(x2+1)
Again for,
∫1(x2+1)3dx
applying reduction formula we get,
=x4(x2+1)2+34∫1(x2+1)2dx=3tan−1(x)8+3x8(x2+1)+x4(x2+1)2∴∫1x2+1dx−2∫1(x2+1)2dx+∫1(x2+1)3dx=3tan−1(x)8−5x8(x2+1)+x4(x2+1)2
Hence,
∫x4dx(x2+1)3=3tan−1(x)8−5x8(x2+1)+x4(x2+1)2+C=3tan−1(x)8+−5x3−3x8(x2+1)2+C.