∫x6+1x2+1=ISubstitute x=tant,dx=sec2t.dt
∴I=(tan6t+1tan2t+1)sec2tdt
∴I=∫(tan6t+1)dt
Now ∫tan6tdt=∫tan4tsec2tdt−∫tan4dt
=tan5t5−tan3t3+∫(sec2t−1)dt
∴∫tan6tdt=tan5t5−tan3t3+tant−t+c
Substituting we get
∫x6+1x2+1dx=t+tan5t5−tan3t3+tant−t+c
∴∫x6+1x2+1dx=x55−x33+x+c
Ans : ∴∫x6+1x2+1dx=x55−x33+x+c