wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve: xsin1x(1x2)32dx.

Open in App
Solution

xsin1x(1x2)3/2dx
=xsin1x(1x2)1/2(1x2)dx
Let sin1x=t
dx(1x2)1/2=dt
=sint.tdt1sin2t
=tsintcos2tdt
=ttantsectdt
=ttantsectdt[(dtdt)(secttantdt)]dt.
=tsect1sectdt
=tsectlog|sect+tant|+c
=sin1xsec(sin1x)log|sec(sin1x)+tan(sin1x)|+c
xsin1xdx(1x2)3/2=sin1xsec(sin1x)log|sec(sin1x)+tan(sin1x)|+c.

1116345_1157554_ans_8ac6f9b46f91494aba56ede84940ae5f.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration as Anti-Derivative
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon