I=∫eaxsinbxdxIntegrate by parts -
=eax∫sinbxdx−∫deaxdx(∫sinbxdx)dx
=eax−cosbxb−∫aeax−cosbxbdx
=−eaxcosbxb+ab∫eaxcosbxdx
=eaxbcosbx+ab[eax∫cosbxdx−∫deaxdx(∫cosbxdx)dx]
=eaxbcosbx+ab[eaxsinbxb−∫aeaxsinbxdx]
=−eaxbcosbx+aeaxb2sinbx−a2b2∫eaxsinbxdx
⇒I=eax−cosbxb+aeaxb2sinbx−I(a2b2)
⇒I+a2b2I=eax(asinbx−bcosbs)b2
⇒Ia2+b2b2=eax(asinbx−bcosbx)b2
⇒I=eaxa2+b2(asinbx−bcosbx)
Hence, proved.