wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve eaxsin bx dx=eaxa2+b2(asinbxbcosbx)

Open in App
Solution

I=eaxsinbxdx
Integrate by parts -
=eaxsinbxdxdeaxdx(sinbxdx)dx
=eaxcosbxbaeaxcosbxbdx
=eaxcosbxb+abeaxcosbxdx
=eaxbcosbx+ab[eaxcosbxdxdeaxdx(cosbxdx)dx]
=eaxbcosbx+ab[eaxsinbxbaeaxsinbxdx]
=eaxbcosbx+aeaxb2sinbxa2b2eaxsinbxdx
I=eaxcosbxb+aeaxb2sinbxI(a2b2)
I+a2b2I=eax(asinbxbcosbs)b2
Ia2+b2b2=eax(asinbxbcosbx)b2
I=eaxa2+b2(asinbxbcosbx)
Hence, proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon