wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve ex(2tanx1+tanx+cot2(x+π4))dx

A
extan(π4x)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
extan(xπ4)+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
extan(3π4x)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A extan(xπ4)+c

consider the given function

I=ex(2tanx1+tanx+cot2(x+π4))dx

First we solve that

cot2(x+π4)=1tan2(x+π4)

Then,

tan(x+π4)=tanx+tanπ41tanxtanπ4

=1+tanx1tanx

On reciprocal that,

1tan(x+π4)=1tanx1+tanx

cot(x+π4)=1tanx1+tanx

Squaring both side and we get,

cot2(x+π4)=(1tanx1+tanx)2

cot2(x+π4)=(tan(xπ4))2

We know that,

tan2θ=sec2θ1

Then,

tan2(xπ4)=sec2(xπ4)1

Put the value of given function

I=ex(2tanx1+tanx+sec2(xπ4)1)dx

I=ex(2tanx1+tanx1+sec2(xπ4))dx

I=ex(2tanx1tanx1+tanx+sec2(xπ4))dx

I=ex(tanx11+tanx+sec2(xπ4))dx

I=ex(tan(xπ4)+sec2(xπ4))dx

But we know that,

I=ex(f(x)+f(x))dx

ex(f(x)+f(x))dx=exf(x)+C

Then,

I=ex(tan(xπ4)+sec2(xπ4))dx

ex(tan(xπ4)+sec2(xπ4))dx=extan(xπ4)dx+C

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon