Solve ∫ex(2tanx1+tanx+cot2(x+π4))dx
consider the given function
I=∫ex(2tanx1+tanx+cot2(x+π4))dx
First we solve that
cot2(x+π4)=1tan2(x+π4)
Then,
tan(x+π4)=tanx+tanπ41−tanxtanπ4
=1+tanx1−tanx
On reciprocal that,
1tan(x+π4)=1−tanx1+tanx
cot(x+π4)=1−tanx1+tanx
Squaring both side and we get,
cot2(x+π4)=(1−tanx1+tanx)2
cot2(x+π4)=(tan(x−π4))2
We know that,
tan2θ=sec2θ−1
Then,
tan2(x−π4)=sec2(x−π4)−1
Put the value of given function
I=∫ex(2tanx1+tanx+sec2(x−π4)−1)dx
I=∫ex(2tanx1+tanx−1+sec2(x−π4))dx
I=∫ex(2tanx−1−tanx1+tanx+sec2(x−π4))dx
I=∫ex(tanx−11+tanx+sec2(x−π4))dx
I=∫ex(tan(x−π4)+sec2(x−π4))dx
But we know that,
I=∫ex(f(x)+f′(x))dx
∫ex(f(x)+f′(x))dx=exf(x)+C
Then,
I=∫ex(tan(x−π4)+sec2(x−π4))dx
∫ex(tan(x−π4)+sec2(x−π4))dx=∫extan(x−π4)dx+C
Hence, this is the answer.