The correct option is B −2cosecα.
⎷(sin(x+α)sinx)+C.
I=∫1√[sin3xsin(x+α)]dx. I=∫1√[sin3x(sinxcosα+cosxsinα)]dx I=∫1√[sin4x(cosα+sinαcotx)]dx ∫cosec2xdx√(cosα+sinαcotx). Put cosα+sinαcotx=t∴−sinαcosec2xdx=dt. ∴I=−1sinα∫dt√(t)=−2√tcosecα =−2cosecα.√cosα+sinαcotx=−2cosecα.√(cosαsinx+sinαcosxsinx) =−2cosecα.
⎷(sin(x+α)sinx).