The correct option is B 2√x2+3x−4+c
1. ∫xn=xn+1n+1+C
Given,
∫2x+3√x2+3x−4dx→(1)
Let, t=x2+3x−4
Differentiating t w.r.t. x,
dtdx=2x+3
⇒dt=(2x+3)dx
Substituting these values in expression 1,
∫(2x+3)dx√x2+3x−4=∫dt√t,
=∫1t12dt,
=t1212+c, (Using Ref 1)
=2√t+c
Substituting the value of t,
∫2x+3√x2+3x−4dx=2√x2+3x−4+c