Consider the given integral.
I=∫x3sin−1x2√1−x4dx
Let t=sin−1x2
dtdx=1√1−x4×2x
dt2=xdx√1−x4
Therefore,
I=12∫tsintdt
I=12[t(−cost)−∫1(−cost)dt]
I=12[−t(cost)+∫costdt]
I=12[−t(cost)+sint]+C
I=12[−sin−1x2(cos(sin−1x2))+sin(sin−1x2)]+C
I=12[x2−cos(sin−1x2)sin−1x2]+C
Hence, this is the answer.