Let I=∫x4+4x3+11x2+12x+8(x2+2x+3)2(x+1)dx
Now (x2+2x+3)2=x4+4x2+9+4x3+12x+6x2
=x4+4x3+10x2+12x+9=Nr−(x2−1)∴Nr=(x2+2x+3)2+(x2−1)
I=∫[1x+1+x−1(x2+2x+3)2]dx=log(x+1)+∫l(2x+2)+m(x2+2x+3)2dx
where 2l=1,2l+m=−1⇒l=12,m=−2
∴I=log(x+1)−l(x2+2x+3)+m∫1[(x+1)2+√22]2dx
=log(x+1)−12(x2+2x+3)−2l1
For l1 put x+1=√2tanθ
∴I1=∫√2sec2θdθ4sec4θ=14√2∫2cos2θdθ=14√2∫(1+cos2θ)dθ
=14√2[θ+sin2θ2]=14√2[tan−1x+1√2+(x+1)√2(x2+2x+3)]
=12√2tan−1x+1√2+12x+1x2+2x+3
Hence I=log(x+1)−1√2tan−1x+1√2+x+1x2+2x+3