wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve x4+4x3+11x2+12x+8(x2+2x+3)2(x+1)dx

Open in App
Solution

Let I=x4+4x3+11x2+12x+8(x2+2x+3)2(x+1)dx
Now (x2+2x+3)2=x4+4x2+9+4x3+12x+6x2
=x4+4x3+10x2+12x+9=Nr(x21)Nr=(x2+2x+3)2+(x21)
I=[1x+1+x1(x2+2x+3)2]dx=log(x+1)+l(2x+2)+m(x2+2x+3)2dx
where 2l=1,2l+m=1l=12,m=2
I=log(x+1)l(x2+2x+3)+m1[(x+1)2+22]2dx
=log(x+1)12(x2+2x+3)2l1
For l1 put x+1=2tanθ
I1=2sec2θdθ4sec4θ=1422cos2θdθ=142(1+cos2θ)dθ
=142[θ+sin2θ2]=142[tan1x+12+(x+1)2(x2+2x+3)]
=122tan1x+12+12x+1x2+2x+3
Hence I=log(x+1)12tan1x+12+x+1x2+2x+3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon