The correct option is
B x+14log∣∣∣x−1x+1∣∣∣−12tan−1+c∫x4x4−1dx
∫x4−1x4−1+1x4−1dx
∫dx+∫1x4−1dx
=x+∫1x4−1dx
=x+∫1(x2−1)(x2+1)dx
=x+12∫1(x2−1)dx−12∫1(x2+1)dx [∴∫1x2−a2dx=12alog∣∣∣x−ax+a∣∣∣+c]
=x+1212×1log∣∣∣x−1x+1∣∣∣−12tan−1x
=x+14log∣∣∣x−1x+1∣∣∣−12tan−1+c
Hence, the answer is x+14log∣∣∣x−1x+1∣∣∣−12tan−1+c.