We have,
I=∫x√1−2xdx
Let t=1−2x
dtdx=0−2
−dt2=dx
Therefore,
I=−12∫(t−1)2√tdt
I=14∫(1−t)√tdt
I=14∫1√tdt−14∫√tdt
I=14(2√t)−14(t)3232+C
I=12(√t)−16(t)32+C
On putting the value of t, we get
I=12(√1−2x)−16(1−2x)32+C
Hence, this is the answer.