∫x√1+x√1−xdx
This can be written as
⇒∫x√(1+x)(1+x)(1−x)(1+x)dx
⇒∫x√(1+x)21−x2dx
⇒∫x(1+x)√1−x2dx
⇒∫(x+x2)√1−x2dx
⇒∫x√1−x2dx+∫x2√1−x2dx
Take x=sinθ ⇒dx=cosθdθ
⇒∫sinθcosθ√1−sin2θdθ+∫sin2θcosθ√1−sin2θdθ
⇒∫sinθcosθcosθdθ+∫sin2θcosθcosθdθ
⇒∫sinθdθ+∫sin2θdθ
⇒∫sinθdθ+12∫2sin2θdθ
⇒−cosθ+12∫(1−cos2θ)dθ
⇒−cosθ+12∫1dθ−12∫cos2θdθ
⇒−cosθ+12θ−14sin2θ
⇒−√1−x2+12sin−1x−12x√1−x2
⇒−√1−x2(1+x2)+12sin−1x