I=∫(log(logx)+1(logx)2)dx=∫log(logx)dx+∫1(logx)2dxLetI1=∫log(logx)dx=∫log(logx).1dxcontinue with integration by part:∫f(x)g(x)dx=f(x)∫g(x)dx−∫[f′(x)∫g(x)dx]dxnow,I1=log(logx)∫1dx−∫[ddx(log(logx)).∫1dx]dx=xlog(logx)−∫[1logx.1x.x]dx=xlog(logx)−∫1logxdxLetI2=∫1logxdx=∫1logx.1dx=1logx.∫1dx−∫[ddx(1logx).∫1dx]dx=xlogx−∫−1(logx)2.1x.xdx=xlogx+∫1(logx)2dxputtingthevalueofI2inI1I1=xlog(logx)−xlogx−∫1(logx)2dxnowputtingthevalueofI1inII=xlog(logx)−xlogx−∫1(logx)2dx+∫1(logx)2dx=xlog(logx)−xlogx+C,whereC=integrationconstant