Solve ∫(√tanx+√cotx)dx.
We have,
∫[√tanx+√cotx]dx
=∫[1√cotx+√cotx]dx
=∫cotx+1√cotxdx
=∫√tanx(cotx+1)dx
Let t2=tanx
On differentiating this equation with respect to x, we get
sec2xdx=2tdt
1+tan2x=2tdtdx
2tdtdx=1+(t2)2
2tdtdx=1+t4
dx=2t1+t4dt
Put the value of t&dt and we get,
∫[√t2(cotx+1)]dx
=∫[√t2(1tanx+1)]dx
=∫t[1t2+1]dx
=∫t[1+t2t2]dx
=∫t[1+t2t2]×2t1+t4dt
=2∫[1+t21+t4]dt
On dividing numerator and denominator by t2, we get,
=2∫1+t2t21+t4t2.dt
=2∫1t2+11t2+t2dt
=2∫1+1t2t2+1t2−2+2dt
=2∫1+1t2(t+1t)2+2dt
=2∫1+1t2(t+1t)2+(√2)2dt
Let t−1t=y
On differentiating both side with respect to x and we get,
1+1t2=dydt
dt=dy(1+1t2)
On putting the value of dt and (1t−t) and we get,
=2∫1+1t2y2+(√2)2×dy(1+1t2)
=2∫1y2+(√2)2dy
We know that,
∫1x2+a2dx=1atan−1xa+C
Then,
=2(1√2tan−1y√2+C)
=2√2tan−1y√2+2C
=√2tan−1y√2+2C
=√2tan−11t−t√2+2C
=√2tan−11−t2√2t+2C
=√2tan−1(1−tanx√2√tanx)+C1∴C1=2C
I=√2tan−1(1−tanx√2tanx)+C1
Hence, this is the answer.