The correct option is C π2n
I=π2n∫0dx1+cotnnx=π2n∫0dx1+cotnn(π2n−x)⎡⎢⎣a∫0f(x)dx=a∫0f(a−x)dx⎤⎥⎦=π2n∫0dx1+cotn(π2−nx)=π2n∫0dx1+tannnx=π2n∫0dx1+1cotnnx=π2n∫0cotnnxcotnnx+1dx∴2I=π2n∫0dx1+cotnnx+π2n∫0cotnnxcotnnx+1dx=π2n∫01+cotnnxcotnnx+1dx=π2n∫0dx=[x]π2n0=π2n