x∫0√x√x+√8−xdx
∫x0√x√x+√8−x×√x−√8−x√x−√8−xdx
∫x0x−√8x−x22x−8dx
12∫x0x−√8x−x2x−4dx
12∫u+4−√8u+32−(u+4)2udu
12∫du+∫duu−12∫√−(u+4)2+8u+32udu
v=u2=du=12udu∫1u2=1v
42+2logu−14∫√16−vvdu
42+2logu−12∫w2w2−16dw
42+2logu−12∫w2+16−16w2−16dw
42+2logu−12w−8∫dww2−16
42+2logu−12√16−u2−8×18log∣∣w−4w+4∣∣
x−42+2log|x−4|−12√16−(x−4)2−log∣∣∣√16−u2−4√16−u2+4∣∣∣
x−42+2log|x−4|−12√8x−x2−log∣∣∣√8x−x2−4√8x−x2+4∣∣∣x0
x−42+2log|x−4|−12√8x−x2−log∣∣∣√8x−x2−4√8x−x2+4∣∣∣