Given
∫ππ21−sinx1−cosxdx
We know that
sinx=2cosx2sinx2 -- (1)
&
cosx=1−2sin2x2
So
1−cosx=1−(1−2sin2x2)=2sin2x2 -- (2)
Put values of (1) & (2) in the expression
∫ππ21−2cosx2sinx22sin2x2dx
=∫ππ212sin2x2− 2cosx2sinx22sin2x2dx
=12∫ππ2(csc2x2)dx−∫ππ2(cotx2)dx
Now we know
∫csc2x2dx=−cotx2.2+C
∫cotx2dx=log∣∣∣sinx2∣∣∣.2+C
Using above formulas, we get
=12∫ππ2(csc2x2)dx−∫ππ2(cotx2)dx
=12(−cotx2).2π|π2−(log∣∣∣sinx2∣∣∣×2)π|π2
=−cotx2π|π2−2log∣∣∣sinx2∣∣∣π|π2
=−(cotπ2−cotπ4)−2(log(sinπ2)−(sinπ4))
=−(0−1)−2(log1−log1√2)
=1−2⎛⎜⎝0−log2−12⎞⎟⎠
=1−2(−.(−12)log(2))
=1−2.12log2
=1−log2
∴∫ππ21−sinx1−cosxdx=1−log2