wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve ππ21sinx1cosxdx

A
12log2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1log2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
1+log2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 1log2
Given
ππ21sinx1cosxdx

We know that

sinx=2cosx2sinx2 -- (1)
&
cosx=12sin2x2

So
1cosx=1(12sin2x2)=2sin2x2 -- (2)

Put values of (1) & (2) in the expression

ππ212cosx2sinx22sin2x2dx

=ππ212sin2x2 2cosx2sinx22sin2x2dx

=12ππ2(csc2x2)dxππ2(cotx2)dx

Now we know

csc2x2dx=cotx2.2+C
cotx2dx=logsinx2.2+C

Using above formulas, we get

=12ππ2(csc2x2)dxππ2(cotx2)dx

=12(cotx2).2π|π2(logsinx2×2)π|π2

=cotx2π|π22logsinx2π|π2

=(cotπ2cotπ4)2(log(sinπ2)(sinπ4))

=(01)2(log1log12)

=120log212

=12(.(12)log(2))

=12.12log2

=1log2

ππ21sinx1cosxdx=1log2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Factorisation and Rationalisation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon