wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve ππ2x(1+sinx)1+cos2xdx

A
π2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
π22
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
π24
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A π2
I=ππ2x(1+sinx)1+cos2xdx ---(i)
=ππ2x(1sinx)1+cos2xdx (baf(x)dx=baf(a+bx)dx)
=ππ2x(1+sinx)1+cos2xdx ---(ii)
adding (i) and (ii)
2I=ππ2x(1+sinx1+sinx)1+cos2xdx
I=2ππxsinx1+cos2xdx
I=4π0xsinx1+cos2xdx ---(iii) (since integrand is even function)
I=4π0(πx)sin(πx)1+cos2(πx)dx (a0f(x)dx=a0f(ax)dx)
I=4π0(πx)sinx1+cos2xdx
I=4ππ0sinx1+cos2xdx4π0xsinx1+cos2xdx
I=4ππ0sinx1+cos2xdxI (from(iii))
2I=4ππ0sinx1+cos2xdx
putting cosx=t
sinxdx=dt
I=2π11dt1+t2
I=2π11dt1+t2 (baf(x)dx=abf(x)dx)
I=4π10dt1+t2 (since integrand is even function)
I=4π[tan1(t)]10
I=4π[π4]
I=π2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon