The correct option is
A π2I=∫π−π2x(1+sinx)1+cos2xdx ---(i)
=∫π−π−2x(1−sinx)1+cos2xdx (∵∫baf(x)dx=∫baf(a+b−x)dx)
=∫π−π2x(−1+sinx)1+cos2xdx ---(ii)
adding (i) and (ii)
⇒2I=∫π−π2x(1+sinx−1+sinx)1+cos2xdx
⇒I=2∫π−πxsinx1+cos2xdx
⇒I=4∫π0xsinx1+cos2xdx ---(iii) (since integrand is even function)
⇒I=4∫π0(π−x)sin(π−x)1+cos2(π−x)dx (∵∫a0f(x)dx=∫a0f(a−x)dx)
⇒I=4∫π0(π−x)sinx1+cos2xdx
⇒I=4π∫π0sinx1+cos2xdx−4∫π0xsinx1+cos2xdx
⇒I=4π∫π0sinx1+cos2xdx−I (from(iii))
⇒2I=4π∫π0sinx1+cos2xdx
putting cosx=t
⇒sinxdx=−dt
⇒I=2π∫−11−dt1+t2
⇒I=2π∫1−1dt1+t2 (∵∫baf(x)dx=−∫abf(x)dx)
⇒I=4π∫10dt1+t2 (since integrand is even function)
⇒I=4π[tan−1(t)]10
⇒I=4π[π4]
⇒I=π2