We have,
∫sec(x2)dx
=∫sec(x2)⋅sec(x/2)+tan(x/2)sec(x/2)+tan(x/2)dx
Let u=sec(x/2)+tan(x/2)
du=12sec(x2)⋅tan(x2)+12sec2(x2)dx
2du=sec(x2)tan(x2)+sec2(x2)dx
∴=∫sec2(x/2)+sec(x/2)tan(x/2)sec(x2)+tan(x2)dx
=2∫duu
=2|u|+c
=2∣∣∣sec(x2)+tan(x2)∣∣∣+c
Hence, this is answer.