∫sin2xcos3xdx=12∫2sin2xcos3xdx
=12∫(sin5x−sinx)dx
(∵sin(A+B)−sin(A−B)=2sinBcosA)
Here A=3x,B=2x
=12(∫sin5xdx−∫sinxdx)
=12(15∫sin(5x)d(√x)−∫sinxdx)
=12(15([−cos(5x)]+C1)−([−cosx])+C2)
=12(cosx−cos5x5)+(C110+C22)
∫sin2xcos3xdx=12(cosx−cos5x5)+k where, k=C1+5C210