I=∫sin2xacos2x+bsin2xdx
=∫sin2xa−asin2x+bsin2xdx
=∫sin2xa−(a−b)sin2xdx
=1b∫sin2xaa−b−asin2xdx
Let sin2x=t ⇒2sinx.cosx.dx=dt
⇒sin2x.dx=dt
Then, we have
I=1a−b∫1(√aa−b)2−(√t)2.dt
=1a−b.12√aa−blog∣∣
∣∣√aa−b−x√aa−b+x∣∣
∣∣
=12√a(a−b)log∣∣
∣∣√a−x.√a−b√a+x√a−b∣∣
∣∣+c