The correct option is
C −√1−x+√x(1−x)+cos−1√x2+cI=∫√1−√x1+√xdx
Let x=cos22m ⇒dx=−2cos2msin2mdm
⇒I=∫√1−cos2m1+cos2m×(−sin4m)dm
=−∫√sin2mcos2msinm dm
=−∫sinmcosmsin4m dm
=−4∫sinmsinm×cos2mdm
=−4∫sin2mcos2mdm
=−42∫(1−cos2m)cos2mdm
=−2∫cos2mdm+2∫cos22mdm
=−sin2m+∫(cos4m+1)dm
=−sin2m+14(sin4m)+m+c
=−sin2m+sin4m4+m+c
=−√1−x+√x(1−x)+cos−1√x2+c