The correct option is A 132(π+7√32−8)
Let I=∫1x5√x2−1dx
Put x=sect⇒dx=tantsectdt
I=∫cos4tdt
Using ∫cosmdx=sin(x)cosm−1xm+m−1m∫cos−2+xxdx
I=14sintcos3t+34∫cos2tdx
=14sintcos3t+38∫(cos2x+12)dx
=38sec−1x+14cos(sec−1x)sin(sec−1x)+38(sin(sec−1x)cos(sec−1x))
∴∫1√2dxx5√x2−1=132(π+7√32−8)