wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve:tanx+cotx.dx

Open in App
Solution

Given,
(tanx+cotx)dx=(sinxcosx+cosxsinx)dx=(sinx+cosx2sinxcosx)dx=2(sinx+cosx)2sinxcosxdx=2sinx+cosx1(1sin2x)dx=2sinx+cosx1(sinxcosx)2dx
Let, u=sinxcosxdu=(cosx+sinx)dx
Substituting the values of u and du we get,
=2du1u2=2sin1u+C=2sin1(sinxcosx)+C
(tanx+cotx)dx=2sin1(sinxcosx)+C.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon