Consider the given integral.
I=∫(xx)x(2xlogx+x)dx
I=∫(xx2)(2xlogx+x)dx
Let t=xx2
logt=x2logx
1tdtdx=(2xlogx+x)
dt=xx2(2xlogx+x)dx
Therefore,
I=∫1dt
I=t+C
On putting the value of t, we get
I=xx2+C
I=xxx+C
Hence, this is the answer.
Arrange these numbers in ascending order: XI, XX, XIV, XXX
Using Roman numerals, find the value of XXX + XL.