Solving Linear Differential Equations of First Order
Solve 1+y2 ...
Question
Solve (1+y2)dx=(tan−1y−x)dy.
A
∴x=tan−1y−1−ce−tan−1y.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
∴x=−tan−1y−1+ce−tan−1y.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
∴x=tan−1y−1+ce−tan−1y.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is D∴x=tan−1y−1+ce−tan−1y. Given, (1+y2)dx=(tan−1y−x)dy
⇒dxdy+x1+y2=tan−1y1+y2 ...(1)
Here P=11+y2
⇒∫PdP=∫11+y2dy=tan−1y ∴I.F=etan−1y.
Multiplying (1) by I.F. we get
etan−1ydxdy+etan−1yx1+y2=etan−1ytan−1y1+y2
Integrating both sides, we get xetan−1y=∫etan−1y.tan−1y1+y2dy=∫tetdt where tan−1y=t ∴11+y2dy=dt ⇒xetan−1y=et.(t−1)+c=etan−1y(tan−1y−1)+c. ∴x=tan−1y−1+ce−tan−1y.