The correct option is B y=ce−2tan−1x+12
Given differential eqn
(x2+1)dy+(2y−1)dx=0
⇒dydx=(1−2y)(x2+1)
⇒dydx+2yx2+1=1x2+1
which is a linear differential equation
Here P=2x2+1;Q=1x2+1
Integrating Factor I.F.=e∫Pdx
=e∫2dxx2+1
⇒I.F.=e2tan−1x
Solution is given by
ye2tan−1x=∫e2tan−1xx2+1dx
Put tan−1x=t
⇒11+x2dx=dt
ye2tan−1x=∫e2tdt
⇒ye2tan−1x=12e2t+C
ye2tan−1x=12e2tan−1x+C
⇒y=ce−2tan−1x+12