We have,
limθ→ππ−θ√cosθ+1 (00form)
So,
⇒limθ→ππ−θ√2cos2θ2−1+1
⇒limθ→ππ−θ√2cosθ2
Applying L’ Hospital rule and we get,
limθ→π0−1√2(−sinθ2)×12
Taking limit and we get,
1√22sinπ2
=2√2or√2
Hence, this is the answer.